Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Prev Vet Med ; 219: 106009, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688889

RESUMO

Bovine Respiratory Disease (BRD) affects young bulls, causing animal welfare and health concerns as well as economical costs. BRD is caused by an array of viruses and bacteria and also by environmental and abiotic factors. How farming practices influence the spread of these causal pathogens remains unclear. Our goal was to assess the impact of zootechnical practices on the spread of three causal agents of BRD, namely the bovine respiratory syncytial virus (BRSV), Mannheimia haemolytica and Mycoplasma bovis. In that extent, we used an individual based stochastic mechanistic model monitoring risk factors, infectious processes, detection and treatment in a farm possibly featuring several batches simultaneously. The model was calibrated with three sets of parameters relative to each of the three pathogens using data extracted from literature. Separated batches were found to be more effective than a unique large one for reducing the spread of pathogens, especially for BRSV and M.bovis. Moreover, it was found that allocating high risk and low risk individuals into separated batches participated in reducing cumulative incidence, epidemic peaks and antimicrobial usage, especially for M. bovis. Theses findings rise interrogations on the optimal farming practices in order to limit BRD occurrence and pave the way to models featuring coinfections and collective treatments p { line-height: 115%; margin-bottom: 0.25 cm; background: transparent}a:link { color: #000080; text-decoration: underline}a.cjk:link { so-language: zxx}a.ctl:link { solanguage: zxx}.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Mannheimia haemolytica , Doenças Respiratórias , Animais , Bovinos , Masculino , Fazendas , Doenças Respiratórias/veterinária , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/microbiologia , Agricultura , Complexo Respiratório Bovino/epidemiologia , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/microbiologia
3.
Vet Res ; 53(1): 102, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461110

RESUMO

Considering human decision-making is essential for understanding the mechanisms underlying the propagation of real-life diseases. We present an extension of a model for pathogen spread that considers farmers' dynamic decision-making regarding the adoption of a control measure in their own herd. Farmers can take into account the decisions and observed costs of their trade partners or of their geographic neighbours. The model and construction of such costs are adapted to the case of bovine viral diarrhoea, for which an individual-based stochastic model is considered. Simulation results suggest that obtaining information from geographic neighbours might lead to a better control of bovine viral diarrhoea than considering information from trade partners. In particular, using information from all geographic neighbours at each decision time seems to be more beneficial than considering only the information from one geographic neighbour or trade partner at each time. This study highlights the central role that social dynamics among farmers can take in the spread and control of bovine viral diarrhoea, providing insights into how public policy efforts could be targeted in order to increase voluntary vaccination uptake against this disease in endemic areas.


Assuntos
Fazendeiros , Infecções por Pestivirus , Animais , Humanos , Comportamento Imitativo , Infecções por Pestivirus/veterinária , Vacinação/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária
4.
PLoS Negl Trop Dis ; 16(11): e0010339, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399500

RESUMO

Rift Valley fever (RVF) is a zoonotic arbovirosis which has been reported across Africa including the northernmost edge, South West Indian Ocean islands, and the Arabian Peninsula. The virus is responsible for high abortion rates and mortality in young ruminants, with economic impacts in affected countries. To date, RVF epidemiological mechanisms are not fully understood, due to the multiplicity of implicated vertebrate hosts, vectors, and ecosystems. In this context, mathematical models are useful tools to develop our understanding of complex systems, and mechanistic models are particularly suited to data-scarce settings. Here, we performed a systematic review of mechanistic models studying RVF, to explore their diversity and their contribution to the understanding of this disease epidemiology. Researching Pubmed and Scopus databases (October 2021), we eventually selected 48 papers, presenting overall 49 different models with numerical application to RVF. We categorized models as theoretical, applied, or grey, depending on whether they represented a specific geographical context or not, and whether they relied on an extensive use of data. We discussed their contributions to the understanding of RVF epidemiology, and highlighted that theoretical and applied models are used differently yet meet common objectives. Through the examination of model features, we identified research questions left unexplored across scales, such as the role of animal mobility, as well as the relative contributions of host and vector species to transmission. Importantly, we noted a substantial lack of justification when choosing a functional form for the force of infection. Overall, we showed a great diversity in RVF models, leading to important progress in our comprehension of epidemiological mechanisms. To go further, data gaps must be filled, and modelers need to improve their code accessibility.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Feminino , Gravidez , Animais , Ecossistema , Febre do Vale de Rift/epidemiologia , África , Arábia
5.
Vet Res ; 53(1): 77, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195961

RESUMO

Bovine respiratory disease (BRD) dramatically affects young calves, especially in fattening facilities, and is difficult to understand, anticipate and control due to the multiplicity of factors involved in the onset and impact of this disease. In this study we aimed to compare the impact of farming practices on BRD severity and on antimicrobial usage. We designed a stochastic individual-based mechanistic BRD model which incorporates not only the infectious process, but also clinical signs, detection methods and treatment protocols. We investigated twelve contrasted scenarios which reflect farming practices in various fattening systems, based on pen sizes, risk level, and individual treatment vs. collective treatment (metaphylaxis) before or during fattening. We calibrated model parameters from existing observation data or literature and compared scenario outputs regarding disease dynamics, severity and mortality. The comparison of the trade-off between cumulative BRD duration and number of antimicrobial doses highlighted the added value of risk reduction at pen formation even in small pens, and acknowledges the interest of collective treatments for high-risk pens, with a better efficacy of treatments triggered during fattening based on the number of detected cases.


Assuntos
Anti-Infecciosos , Complexo Respiratório Bovino , Doenças Respiratórias , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Complexo Respiratório Bovino/diagnóstico , Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/prevenção & controle , Bovinos , Fazendas , Doenças Respiratórias/veterinária
6.
Epidemics ; 40: 100615, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970067

RESUMO

Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, multiple modelling approaches can be used during an epidemic to support effective decision making in a timely manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to fostering technical dialogue between modellers. In this paper, we present the results of the first modelling challenge in animal health - the ASF Challenge - which focused on a synthetic epidemic of African swine fever (ASF) on an island. The modelling approaches proposed by five independent international teams were compared. We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions outperformed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. Finally, we discuss the lessons learnt from model comparison to guide decision making.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Epidemias , Febre Suína Africana/epidemiologia , Animais , Animais Selvagens , Sus scrofa , Suínos
7.
PLoS Comput Biol ; 18(7): e1010314, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35867712

RESUMO

Quantifying the variation of pathogens' life history traits in multiple host systems is crucial to understand their transmission dynamics. It is particularly important for arthropod-borne viruses (arboviruses), which are prone to infecting several species of vertebrate hosts. Here, we focus on how host-pathogen interactions determine the ability of host species to transmit a virus to susceptible vectors upon a potentially infectious contact. Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease, chosen as a case study. The relative contributions of livestock species to RVFV transmission has not been previously quantified. To estimate their potential to transmit the virus over the course of their infection, we 1) fitted a within-host model to viral RNA and infectious virus measures, obtained daily from infected lambs, calves, and young goats, 2) estimated the relationship between vertebrate host infectious titers and probability to infect mosquitoes, and 3) estimated the net infectiousness of each host species over the duration of their infectious periods, taking into account different survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along with the lifespan of infectious particles, could be sources of heterogeneity between hosts. Given available data on RVFV competent vectors, we found that, for similar infectious titers, infection rates in the Aedes genus were on average higher than in the Culex genus. Consequently, for Aedes-mediated infections, we estimated the net infectiousness of lambs to be 2.93 (median) and 3.65 times higher than that of calves and goats, respectively. In lambs, we estimated the overall infectiousness to be 1.93 times higher in individuals which eventually died from the infection than in those recovering. Beyond infectiousness, the relative contributions of host species to transmission depend on local ecological factors, including relative abundances and vector host-feeding preferences. Quantifying these contributions will ultimately help design efficient, targeted, surveillance and vaccination strategies.


Assuntos
Aedes , Vírus da Febre do Vale do Rift , Animais , Gado , Mosquitos Vetores , Ovinos , Vertebrados , Carga Viral
8.
Epidemics ; 40: 100616, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878574

RESUMO

African swine fever (ASF) is an emerging disease currently spreading at the interface between wild boar and pig farms in Europe and Asia. Current disease control regulations, which involve massive culling with significant economic and animal welfare costs, need to be improved. Modelling enables relevant control measures to be explored, but conducting the exercise during an epidemic is extremely difficult. Modelling challenges enhance modellers' ability to timely advice policy makers, improve their readiness when facing emerging threats, and promote international collaborations. The ASF-Challenge, which ran between August 2020 and January 2021, was the first modelling challenge in animal health. In this paper, we describe the objectives and rules of the challenge. We then demonstrate the mechanistic multi-host model that was used to mimic as accurately as possible an ASF-like epidemic, provide a detailed explanation of the surveillance and intervention strategies that generated the synthetic data, and describe the different management strategies that were assessed by the competing modelling teams. We then outline the different technical steps of the challenge as well as its environment. Finally, we synthesize the lessons we learnt along the way to guide future modelling challenges in animal health.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Epidemias , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Animais , Epidemias/veterinária , Europa (Continente)/epidemiologia , Sus scrofa , Suínos
9.
Vet Res ; 53(1): 45, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733232

RESUMO

Bovine paratuberculosis is an endemic disease caused by Mycobacterium avium subspecies paratuberculosis (Map). Map is mainly transmitted between herds through movement of infected but undetected animals. Our objective was to investigate the effect of observed herd characteristics on Map spread on a national scale in Ireland. Herd characteristics included herd size, number of breeding bulls introduced, number of animals purchased and sold, and number of herds the focal herd purchases from and sells to. We used these characteristics to classify herds in accordance with their probability of becoming infected and of spreading infection to other herds. A stochastic individual-based model was used to represent herd demography and Map infection dynamics of each dairy cattle herd in Ireland. Data on herd size and composition, as well as birth, death, and culling events were used to characterize herd demography. Herds were connected with each other through observed animal trade movements. Data consisted of 13 353 herds, with 4 494 768 dairy female animals, and 72 991 breeding bulls. We showed that the probability of an infected animal being introduced into the herd increases both with an increasing number of animals that enter a herd via trade and number of herds from which animals are sourced. Herds that both buy and sell a lot of animals pose the highest infection risk to other herds and could therefore play an important role in Map spread between herds.


Assuntos
Doenças dos Bovinos , Modelos Epidemiológicos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Indústria de Laticínios , Feminino , Irlanda/epidemiologia , Masculino , Paratuberculose/microbiologia , Paratuberculose/transmissão , Prevalência
10.
J R Soc Interface ; 19(188): 20210744, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259957

RESUMO

To control the spread of an infectious disease over a large network, the optimal allocation by a social planner of a limited resource is a fundamental and difficult problem. We address this problem for a livestock disease that propagates on an animal trade network according to an epidemiological-demographic model based on animal demographics and trade data. We assume that the resource is dynamically allocated following a certain score, up to the limit of resource availability. We adapt a greedy approach to the metapopulation framework, obtaining new scores that minimize approximations of two different objective functions, for two control measures: vaccination and treatment. Through intensive simulations, we compare the greedy scores with several heuristics. Although topology-based scores can limit the spread of the disease, information on herd health status seems crucial to eradicating the disease. In particular, greedy scores are among the most effective in reducing disease prevalence, even though they do not always perform the best. However, some scores may be preferred in real life because they are easier to calculate or because they use a smaller amount of resources. The developed approach could be adapted to other epidemiological models or to other control measures in the metapopulation setting.


Assuntos
Heurística , Alocação de Recursos , Animais
11.
Vaccines (Basel) ; 9(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696246

RESUMO

Bovine viral diarrhoea (BVD) remains an issue despite control programs implemented worldwide. Virus introduction can occur through contacts with neighbouring herds. Vaccination can locally protect exposed herds. However, virus spread depends on herd characteristics, which may impair vaccination efficiency. Using a within-herd epidemiological model, we compared three French cow-calf farming systems named by their main breed: Charolaise, Limousine, and Blonde d'Aquitaine. We assessed vaccination strategies of breeding females assuming two possible protections: against infection or against vertical transmission. Four commercial vaccines were considered: Bovilis®, Bovela®, Rispoval®, and Mucosiffa®. We tested various virus introduction frequency in a naïve herd. We calculated BVD economic impact and vaccination reward. In Charolaise, BVD economic impact was 113€ per cow over 5 years after virus introduction. Irrespective of the vaccine and for a high enough risk of introduction, the yearly expected reward was 0.80€ per invested euro per cow. Vaccination should not be stopped before herd exposure has been decreased. In contrast, the reward was almost nil in Blonde d'Aquitaine and Limousine. This highlights the importance of accounting for herd specificities to assess BVD impact and vaccination efficiency. To guide farmers' vaccination decisions against BVD, we transformed this model into a French decision support tool.

13.
Sci Rep ; 11(1): 9581, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953245

RESUMO

Accounting for individual decisions in mechanistic epidemiological models remains a challenge, especially for unregulated endemic animal diseases for which control is not compulsory. We propose a new integrative model by combining two sub-models. The first one for the dynamics of a livestock epidemic on a metapopulation network, grounded on demographic and animal trade data. The second one for farmers' behavior regarding the adoption of a control measure against the disease spread in their herd. The measure is specified as a protective vaccine with given economic implications, and the model is numerically studied through intensive simulations and sensitivity analyses. While each tested parameter of the model has an impact on the overall model behavior, the most important factor in farmers' decisions is their frequency, as this factor explained almost 30% of the variation in decision-related outputs of the model. Indeed, updating frequently local health information impacts positively vaccination, and limits strongly the propagation of the pathogen. Our study is relevant for the understanding of the interplay between decision-related human behavior and livestock epidemic dynamics. The model can be used for other structures of epidemic models or different interventions, by adapting its components.


Assuntos
Criação de Animais Domésticos , Doenças dos Bovinos/epidemiologia , Modelos Teóricos , Animais , Bovinos , Tomada de Decisões , Epidemias/veterinária , Fazendeiros
14.
Vet Res ; 52(1): 40, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676570

RESUMO

Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009-2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.


Assuntos
Inteligência Artificial/estatística & dados numéricos , Atenção à Saúde/métodos , Medicina Veterinária/métodos , Animais , Medicina Veterinária/instrumentação
15.
Proc Biol Sci ; 288(1944): 20202810, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529565

RESUMO

Spatio-temporally heterogeneous environments may lead to unexpected population dynamics. Knowledge is needed on local properties favouring population resilience at large scale. For pathogen vectors, such as tsetse flies transmitting human and animal African trypanosomosis, this is crucial to target management strategies. We developed a mechanistic spatio-temporal model of the age-structured population dynamics of tsetse flies, parametrized with field and laboratory data. It accounts for density- and temperature-dependence. The studied environment is heterogeneous, fragmented and dispersal is suitability-driven. We confirmed that temperature and adult mortality have a strong impact on tsetse populations. When homogeneously increasing adult mortality, control was less effective and induced faster population recovery in the coldest and temperature-stable locations, creating refuges. To optimally select locations to control, we assessed the potential impact of treating them and their contribution to the whole population. This heterogeneous control induced a similar population decrease, with more dispersed individuals. Control efficacy was no longer related to temperature. Dispersal was responsible for refuges at the interface between controlled and uncontrolled zones, where resurgence after control was very high. The early identification of refuges, which could jeopardize control efforts, is crucial. We recommend baseline data collection to characterize the ecosystem before implementing any measures.


Assuntos
Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Ecossistema , Humanos , Insetos Vetores , Dinâmica Populacional
16.
Vet Res ; 52(1): 5, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413651

RESUMO

Bovine respiratory diseases (BRD) are a major concern for the beef cattle industry, as beef calves overwhelmingly develop BRD symptoms during the first weeks after their arrival at fattening units. These cases occur after weaned calves from various cow-calf producers are grouped into batches to be sold to fatteners. Cross-contaminations between calves from different origins (potentially carrying different pathogens), together with increased stress because of the process of batch creation, can increase their risks of developing BRD symptoms. This study investigated whether reducing the number of different origins per batch is a strategy to reduce the risk of BRD cases. We developed an algorithm aimed at creating batches with as few origins as possible, while respecting constraints on the number and breed of the calves. We tested this algorithm on a dataset of 137,726 weaned calves grouped into 9701 batches by a French organization. We also computed an index assessing the risks of developing BRD because of the batch composition by considering four pathogens involved in the BRD system. While increasing the heterogeneity of batches in calf bodyweight, which is not expected to strongly impact the performance, our algorithm successfully decreased the average number of origins in the same batch and their risk index. Both this algorithm and the risk index can be used as part of decision tool to assess and possibly minimize BRD risk at batch creation, but they are generic enough to assess health risk for other production animals, and optimize the homogeneity of selected characteristics.


Assuntos
Abate de Animais , Complexo Respiratório Bovino/prevenção & controle , Algoritmos , Abate de Animais/métodos , Animais , Complexo Respiratório Bovino/etiologia , Bovinos , Masculino , Fatores de Risco , Desmame
17.
Epidemics ; 33: 100409, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137548

RESUMO

Estimating the epidemic potential of vector-borne diseases, along with the relative contribution of underlying mechanisms, is crucial for animal and human health worldwide. In West African Sahel, several outbreaks of Rift Valley fever (RVF) have occurred over the last decades, but uncertainty remains about the conditions necessary to trigger these outbreaks. We use the basic reproduction number (R0) as a measure of RVF epidemic potential in northern Senegal, and map its value in two distinct ecosystems, namely the Ferlo and the Senegal River delta and valley. We consider three consecutive rainy seasons (July-November 2014, 2015 and 2016) and account for several vector and animal species. We parametrize our model with estimates of Aedes vexans arabiensis, Culex poicilipes, Culex tritaeniorhynchus, cattle, sheep and goat abundances. The impact of RVF virus introduction is assessed every week over northern Senegal. We highlight September as the period of highest epidemic potential in northern Senegal, resulting from distinct dynamics in the two study areas. Spatially, in the seasonal environment of the Ferlo, we observe that high-risk locations vary between years. We show that decreased vector densities do not greatly reduce R0 and that cattle immunity has a greater impact on reducing transmission than small ruminant immunity. The host preferences of vectors and the temperature-dependent time interval between their blood meals are crucial parameters needing further biological investigations.


Assuntos
Febre do Vale de Rift/epidemiologia , Aedes/virologia , Animais , Bovinos , Culex/virologia , Surtos de Doenças , Vetores de Doenças , Ecossistema , Epidemias , Humanos , Mosquitos Vetores , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift , Estações do Ano , Senegal/epidemiologia , Ovinos , Temperatura
18.
PLoS Comput Biol ; 15(9): e1007342, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518349

RESUMO

Stochastic mechanistic epidemiological models largely contribute to better understand pathogen emergence and spread, and assess control strategies at various scales (from within-host to transnational scale). However, developing realistic models which involve multi-disciplinary knowledge integration faces three major challenges in predictive epidemiology: lack of readability once translated into simulation code, low reproducibility and reusability, and long development time compared to outbreak time scale. We introduce here EMULSION, an artificial intelligence-based software intended to address those issues and help modellers focus on model design rather than programming. EMULSION defines a domain-specific language to make all components of an epidemiological model (structure, processes, parameters…) explicit as a structured text file. This file is readable by scientists from other fields (epidemiologists, biologists, economists), who can contribute to validate or revise assumptions at any stage of model development. It is then automatically processed by EMULSION generic simulation engine, preventing any discrepancy between model description and implementation. The modelling language and simulation architecture both rely on the combination of advanced artificial intelligence methods (knowledge representation and multi-level agent-based simulation), allowing several modelling paradigms (from compartment- to individual-based models) at several scales (up to metapopulation). The flexibility of EMULSION and its capability to support iterative modelling are illustrated here through examples of progressive complexity, including late revisions of core model assumptions. EMULSION is also currently used to model the spread of several diseases in real pathosystems. EMULSION provides a command-line tool for checking models, producing model diagrams, running simulations, and plotting outputs. Written in Python 3, EMULSION runs on Linux, MacOS, and Windows. It is released under Apache-2.0 license. A comprehensive documentation with installation instructions, a tutorial and many examples are available from: https://sourcesup.renater.fr/www/emulsion-public.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Software , Processos Estocásticos , Animais , Bovinos , Epidemiologia , Humanos , Plantas
19.
Vet Res ; 50(1): 30, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036076

RESUMO

To explore the regional spread of endemic pathogens, investigations are required both at within and between population levels. The bovine viral diarrhoea virus (BVDV) is such a pathogen, spreading among cattle herds mainly due to trade movements and neighbourhood contacts, and causing an endemic disease with economic consequences. To assess the contribution of both transmission routes on BVDV regional and local spread, we developed an original epidemiological model combining data-driven and mechanistic approaches, accounting for heterogeneous within-herd dynamics, animal movements and neighbourhood contacts. Extensive simulations were performed over 9 years in an endemic context in a French region with high cattle density. The most uncertain model parameters were calibrated on summary statistics of epidemiological data, highlighting that neighbourhood contacts and within-herd transmission should be high. We showed that neighbourhood contacts and trade movements complementarily contribute to BVDV spread on a regional scale in endemically infected and densely populated areas, leading to intense fade-out/colonization events: neighbourhood contacts generate the vast majority of outbreaks (72%) but mostly in low immunity herds and correlated to a rather short presence of persistently infected animals (P); trade movements generate fewer infections but could affect herds with higher immunity and generate a prolonged presence of P. Both movements and neighbourhood contacts should be considered when designing control or eradication strategies for densely populated region.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/transmissão , Vírus da Diarreia Viral Bovina/fisiologia , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Bovinos , Meio Ambiente , França/epidemiologia , Fatores de Risco , Meios de Transporte
20.
Front Vet Sci ; 6: 142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139636

RESUMO

Vibrio aestuarianus is a bacterium related to mortality outbreaks in Pacific oysters, Crassostrea gigas, in France, Ireland, and Scotland since 2011. Knowledge about its transmission dynamics is still lacking, impairing guidance to prevent and control the related disease spread. Mathematical modeling is a relevant approach to better understand the determinants of a disease and predict its dynamics in imperfectly observed pathosystems. We developed here the first marine epidemiological model to estimate the key parameters of V. aestuarianus infection at a local scale in a small and closed oyster population under controlled laboratory conditions. Using a compartmental model accounting for free-living bacteria in seawater, we predicted the infection dynamics using dedicated and model-driven collected laboratory experimental transmission data. We estimated parameters and showed that waterborne transmission of V. aestuarianus is possible under experimental conditions, with a basic reproduction number R0 of 2.88 (95% CI: 1.86; 3.35), and a generation time of 5.5 days. Our results highlighted a bacterial dose-dependent transmission of vibriosis at local scale. Global sensitivity analyses indicated that the bacteria shedding rate, the concentration of bacteria in seawater that yields a 50% chance of catching the infection, and the initial bacterial exposure dose W0 were three critical parameters explaining most of the variation in the selected model outputs related to disease spread, i.e., R0, the maximum prevalence, oyster survival curve, and bacteria concentration in seawater. Prevention and control should target the exposure of oysters to bacterial concentration in seawater. This combined laboratory-modeling approach enabled us to maximize the use of information obtained through experiments. The identified key epidemiological parameters should be better refined by further dedicated laboratory experiments. These results revealed the importance of multidisciplinary approaches to gain consistent insights into the marine epidemiology of oyster diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...